Publications

Peer-Reviewed Research Publications

*WWU undergraduate co-authors, #WWU M.S. co-author, ‡NSF-REU undergraduate co-authors

37) #Talusig, J.M.; Murphy, A.R. “Synthesis and Characterization of Highly Thiolated Silk Fibroin.Macromol. Chem. Phys., 2023, 2300340.

 https://doi.org/10.1002/macp.202300340 

36) #Santen, R.M.; *Owens, K.M.; *Echague, K.C.; Murphy, A.R. “Chemical Modification of Silk Proteins via Palladium-Mediated Suzuki-Miyaura Reactions” Macromol. Chem. Phys., 2023, 2300307.

 https://doi.org/10.1002/macp.202300307  

35) *Hausken, Kian; *Frevol, Romane; *Dowdle, Kimberly; *Young, Aleena; #Talusig, Jeremy; *Holbrook, Carolynne, *Rubin, Benjamin; Murphy, A.R. “Quantitative Functionalization of the Tyrosine Residues in Silk Fibroin Through an Amino-Tyrosine Intermediate.” Macromol. Chem. Phys., 2022, 223 (17), 2200119.

https://doi.org/10.1002/macp.202200119

34) *Patamia, E.D.; #Ostrovsky-Snider, N.A.; Murphy, A.R. “Photolithographic Masking Method to Chemically Pattern Silk Film Surfaces,” ACS Appl. Mater. Interfaces, 2019, 11(37), 33612-33619.  

https://pubs.acs.org/doi/10.1021/acsami.9b10226

33) *James, E.I.; ‡Jenkins, L.D.; Murphy, A.R. “Peptide-Thiophene Hybrids as Self-Assembling Conductive Hydrogels,” Macromol. Mater. Eng., 2019, 304, 1900285.  

https://doi.org/10.1002/mame.201900285

32) *Hagler, J.R.; *Peterson, B.; Murphy, A.R.; Leger, J.M. “Performance of biocompatible silk-polypyrrole actuators under biologically relevant conditions.” J. Appl. Polym. Sci., 2018, 135, 46922. actuators under biologically relevant conditions.” J. Appl. Polym. Sci., 2018, 135, 46922.

https://doi.org/10.1002/app.46922

31) Tsui, J.H.; #Ostrovsky-Snider, N.A.; Yama, D.M.P.; *Donohue, J.D.; Choi, J.S.; Chavanachat, R.; *Larson, J.D.; Murphy, A.R.; Kim, D.H. “Conductive Silk-Polypyrrole Composite Scaffolds with Bioinspired Nanotopographic Cues for Cardiac Tissue Engineering” J. Mater. Chem. B, 2018, 6, 7185-7196. 

https://doi.org/10.1039/C8TB01116H

30) #Severt, S.Y.; *Maxwell, S.; *Bontrager, J.; Leger, J.M.; Murphy, A.R. “Mimicking Muscle Fiber Structure and Function Through Electromechanical Actuation of Electrospun Silk Fiber Bundles,” J. Mater. Chem. B, 20175, 8105-8114.  

https://doi.org/10.1039/C7TB01904A

29) *Blatz, T.J.; *‡Fry, M.M.; *James, E.I.; *Albin, T.J.; *Pollard, Z.; Kowalczyk, T.; Murphy, A.R. “Templating the 3D structure of conducting polymers with self-assembling peptides,” J. Mater. Chem. B, 2017, 5, 4690-4696.

https://doi.org/10.1039/C7TB00221A

28) *Fengel, C.V.; *Bradshaw, N.P.; #Severt, S.Y.; Murphy, A.R.; Leger, J.M.  “Biocompatible Silk-Conducting Polymer Composite Trilayer Actuators,” Smart Mater. Struct., 2017, 26 (5), 055004. 

https://doi.org/10.1088/1361-665X/aa65c4

27) *Larson, J.D.; *Fengel, C.V.; *Bradshaw, N.P.; #Romero, I.S.; Leger, J.M.; Murphy, A.R. "Enhanced actuation performance of silk-polypyrrole composites," Mat. Chem. Phys., 2016186, 67-74. 

https://doi.org/10.1016/j.matchemphys.2016.10.030

26) #Severt, S.Y.; *Ostrovsky-Snider, N.A.; Leger, J.M.; Murphy, A.R. "Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization," ACS Appl. Mater. Interfaces2015(45), 25281–25288. 

https://pubs.acs.org/doi/abs/10.1021/acsami.5b07332

25) *Bradshaw, N.P.; #Severt, S.Y.; Wang, Z.; *Klemke, C.V.; *Larson, J.D.; Zhu, Z.; Murphy, A.R.; Leger, J.M. "ToF-SIMS Characterization of Silk Fibroin and Polypyrrole Composite Actuators," Synthetic Metals, 2015, 209, 490-495. 

https://doi.org/10.1016/j.synthmet.2015.08.031

24) *Atterberry, P.N.; *Roark, T.J.; #Severt, S.Y.; *Schiller, M.L.; Antos, J.M.; Murphy, A.R. "Sustained Delivery of the Chemokine CXCL12 from Chemically Modified Silk Hydrogels." Biomacromolecules, 2015, 16 (5), 1582–1589.

https://pubs.acs.org/doi/abs/10.1021/acs.biomac.5b00144

23) *Albin, T.J.; ‡*Fry, M.M.; Murphy, A.R. Synthesis, "Characterization and Secondary Structure Determination of a Silk-Inspired Self-Assembling Peptide: A Laboratory Exercise for Organic and Biochemistry Courses." J. Chem. Educ. 2014, 91 (11), 1981–1984. 

https://pubs.acs.org/doi/abs/10.1021/ed5001203

22) #Romero, I.; *‡Bradshaw, N.; *Larson, J.; *Severt, S.; *Schurr, M.;  ‡Roberts, S.; Leger, J.M.; Murphy, A.R. "Biocompatible Electromechanical Actuators Composed of Silk-Conducting Polymer Composites." Adv. Funct. Mater. 201424 (25), 3866–3873. 

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201303292

21) #Romero, I.; *Schurr, M.; *Kotlik, M.; *Lally, J.; Murphy, A.R. "Enhancing the Interface in Silk-Polypyrrole Composites Through Chemical Modification of Silk Fibroin." ACS Appl. Mater. Interfaces, 2013, 5 (3), 553-564. 

https://pubs.acs.org/doi/abs/10.1021/am301844c

Work Prior to WWU

20) Li, C.; Luo, T.; Zheng, Z.; Murphy, A.R.; Wang, X.; Kaplan, D.L. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomaterialia 2014, 11, 222-232.

19) Cronin-Golomb, M.; Murphy, A.R.; Mondia, J.P.; Kaplan, D.L.; Omenetto, F.G. Optically induced birefringence and holography in silk. J. Poly. Sci. B: Poly. Phys. 2012, 50 (4), 257-262.

18) Tsioris, K.; Tilburey, G.E.; Murphy, A.R.; Domachuk, P.; Kaplan, D.L.; Omenetto, F.G. Functionalized-Silk-Based Active Optofluidic Devices. Adv. Funct. Mater. 201020 (7), 1083-1089.

17) Murphy, A.R.; Kaplan, D.L. Biomedical applications of chemically-modified silk fibroin. J. Mater. Chem. 2009, 19 (36), 6443-6450.

16) Wenk, E.; Murphy, A.R.; Kaplan, D.L.; Meinel, L.; Merkle, H.P.; Uebersax, L. The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials 2009, 31 (6), 1403-1413.

15) Mauldin, C.E.; Puntambekar, K.; Murphy, A.R.; Liao, F.; Subramanian, V.; Fréchet, J.M.J.; DeLongchamp, D.M.; Fischer, D.A.; Toney, M.F. Solution Processible a,w-Distyryl Oligothiophene Semiconductors with Enhanced Environmental Stability. Chem. Mater. 2009, 21 (9), 1927-1938.

14) Murphy, A. R.; St. John, P.; Kaplan, D. L. Modification of Silk Fibroin Using Diazonium Coupling Chemistry and the Effects on hMSC Proliferation and Differentiation. Biomaterials 2008, 29 (19), 2829-2838.

13) Murphy, A. R.; Fréchet, J.M.J. Organic Semiconducting Oligomers for Use in Field-Effect Transistors. Chem. Rev. 2007, 107 (4), 1066-1096.  

12) Chang, J.B.; Molesa, S.E.; Murphy, A.R.; Fréchet, J.M.J.; Subramanian, V. “Inkjetted crystalline single monolayer oligothiophene OTFTs.” IEEE Trans. Elect. Dev. 2006, 53 (4), 594-600.

11) Chang, J.B.; Liu, V.; Sivula, K.; Luscombe, C.; Murphy, A.R.; Liu, J.; Fréchet, J.M.J.; Subramanian, V. Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 2006, 100 (1), 014506/1-014506/7.

10) Chen, J.; Ratera, I.; Murphy, A.R.; Ogletree, D.F.; Fréchet, J.M.J.; Salmeron, M. Friction-Anisotropy Dependence in Organic Self- Assembled Monolayers. Surf. Sci. 2006, 600 (18), 4008-4012.

9) DeLongchamp, D. M.; Jung, Y.; Fischer, D. A.; Lin, E. K.; Chang, P.; Subramanian, V.; Murphy, A. R.; Fréchet, J. M. J. Correlating Molecular Design to Microstructure in Thermally Convertible Oligothiophenes:The Effect of Branched vs. Linear Solubilizing Groups. J. Phys. Chem. B 2006, 110 (22), 10645-10650.

8) Murphy, A.R.; VanDyke, P.; Liu, J.; Fréchet, J.M.J.; Chang, C.; Subramanian, V.; DeLongchamp, D.M.; Sambasivan, S.; Fischer, D.A.; Lin, E.K. Self-assembly, Molecular Ordering and Charge Mobility in Solution-Processed Ultrathin Oligothiophene Films. Chem. Mater. 2005, 17 (24), 6033-6041. 

7) Murphy, A.R.; Liu, J.; Luscombe C.; Kavulak, D.; Fréchet, J.M.J.; Kline, J.R.; McGehee, M.D. Synthesis, Characterization, and Field-Effect Transistor Performance of Carboxylate Functionalized Polythiophenes with Increased Air Stability.  Chem. Mater. 2005, 17 (20), 4892-4899.

6) DeLongchamp, D.M.; Sambasivan, S.; Fischer, D.A.; Lin, E.K.; Chang, P.; Murphy, A.R.; Fréchet, J.M.J.; Subramanian, V. Direct Correlation of Organic Semiconductor Film Structure to Field-Effect Mobility. Adv. Mater. 2005, 17 (19), 2340-2344. (cover article).

5) Ratera, I.; Chen, J.; Murphy, A.; Ogletree, D. F.; Fréchet, J. M. J.; Salmeron, M.  Atomic force microscopy nanotribology study of oligothiophene self-assembled films.  Nanotechnology 2005, 16, S235-S239.

4) Chen, J.; Ratera, I.; Ogletree, D. F.; Salmeron, M.; Murphy, A. R.; Fréchet, J. M. J. Atomic Force Microscopy Study of β-Substituted-T7 Oligothiophene Films on Mica: Mechanical Properties and Humidity-Dependent Phases.  Langmuir 2005, 21(3), 1080-1085.

3) Chen, J.; Murphy, A.R.; Esteve, J.; Ogletree, D. F.; Salmeron, M.; Fréchet, J.M.J.  Preparation and Nanoscale Mechanical Properties of Self-Assembled Carboxylic Acid Functionalized Pentathiophene on Mica. Langmuir 2004, 20(18), 7703-7710.  

2) Chang, P.C.; Lee, J.; Huang, D.; Subramanian, V.; Murphy, A.R.; Fréchet, J.M.J. Film Morphology and Thin Film Transistor Performance of Solution-Processed Oligothiophenes. Chem. Mater. 2004, 16(23), 4783-4789.

1) Murphy, A.R.; Fréchet, J.M.J.; Chang, P.; Lee, J.; Subramanian, V. Organic Thin Film Transistors from a Soluble Oligothiophene Derivative Containing Thermally Removable Solubilizing Groups. J. Am. Chem. Soc. 2004, 126(6), 1596-1597. 

 

Book Chapters

Murphy, A.R.; #Romero, I.S. Biochemical and biophysical properties of native Bombyx mori silk for tissue engineering applications. Silk biomaterials for tissue engineering and regenerative medicine. Ed. S.C Kundu, Woodhead Publishing, Cambridge, United Kingdom, 2014 (ISBN: 9780857096999).