Photo of Dr. Kowalczyk

Tim Kowalczyk, PhD


(360) 650-6622 | CB 241

View Profile

*Denotes WWU student

35. T. M. Leo*, M. Robbins*, A. Sullivan*, H. Thornes*, G. Fitzsimmons*, A. Goodey*, T. Kowalczyk (2024) Simulation of interlayer coupling for electroactive covalent organic framework design. J. Chem. Phys. 160, 184704.

34. H. R. Lewine*, A. G. Teigen*, A. M. Trausch*, K. M. Lindblom*, T. Seda, E. W. Reinheimer, T. Kowalczyk, J. D. Gilbertson (2023) Sequential Deoxygenation of CO2 and NO2– via Redox-Control of a Pyridinediimine Ligand with a Hemilabile Phosphine. Inorg. Chem. 62, 15173-15179.

33. L. Frey, O. Oliveira, A. Sharma, R. Guntermann, S. P. S. Fernandes, K. M. Cid-Seara, H. Abbay*, H. Thornes*, J. Rocha, M Döblinger, T. Kowalczyk, A. Rao, L. M. Salonen, D. D. Medina (2023) Building Blocks and COFs Formed in Concert–Three Component Synthesis of Pyrene‐Fused Azaacene Covalent Organic Framework in the Bulk and as Films. Angew. Chem. Int. Ed. 62, e202302872.
This article was featured in a themed collection "Rethinking Chemistry" in Angew. Chem.

32. M. Y. Deshaye*, A. T. Wrede*, T. Kowalczyk (2023) Electronic transition dipole moments from time-independent excited-state density-functional tight-binding. J. Chem. Phys. 158, 134104.

31. M. Y. Deshaye*, Z. A. Pollard*, A. Banducci*, A. Goodey*, C. Prommin*, N. Kanlayakan*, N. Kungwan, T. Kowalczyk (2022) Accessible and efficient modeling of chromophores within time-independent excited-state density functional tight-binding: Concepts and applications. Physical Chemistry Research at Undergraduate Institutions: Innovative and Impactful Approaches, Vol. 2, 125-144.

30. A. T. Zemenick, S. C. Jones, M. G. Weber, A. J. Webster, E. Raymond, K. Sandelin, T. Kowalczyk, N. Hessami*, C. L. Dahlberg (2022) Diversifying and humanizing scientist role models through constructing slide deck on researchers' research and life experiences. CourseSource,

29. E. Jin, K. Geng, S. Fu, S. Yang, N. Kanlayakan*, M. A. Addicoat, N. Kungwan, J. Geurs, H. Xu, M. Bonn, H. I. Wang, J. Smet, T. Kowalczyk, D. Jiang (2021) Exceptional electron conduction in two-dimensional covalent organic frameworks. Chem 7, 1-16.

28. E. Epifanovsky et al. including T. Kowalczyk (2021) Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 155, 084801.

27. H. Kawashima, S. Ukai, R. Nozawa, N. Fukui, G. Fitzsimmons*, T. Kowalczyk, H. Fliegl, H. Shinokubo (2021) Determinant factors of three-dimensional aromaticity in antiaromatic cyclophanes. J. Am. Chem. Soc. 143, 28, 10676-10685.
This article was selected for a virtual cover of its issue of JACS.

26. R. Szabo*, K. N. Le*, T. Kowalczyk (2021) Multifactor theoretical modeling of solar thermal fuels built on azobenzene and norbornadiene scaffolds. Sustainable Energy Fuels 5, 2335-2346.

25. B. Hourahine et al., including M. Y. Deshaye* and T. Kowalczyk (2020) DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 152, 124101.
This article was chosen as a Feature Article in the JCP special issue on electronic structure packages.

24. R. Nozawa, J. Kim, J. Oh, A. Lamping*, Y. Wang, S. Shimizu, I. Hisaki, T. Kowalczyk, H. Fliegl, D. Kim, H. Shinokubo (2019) Three-dimensional aromaticity in an antiaromatic cyclophane. Nat. Commun. 10, 3576.
This article was highlighted in Synfacts.

23. P. Spaltenstein*, E. J. Cummins*, K.-M. Yokuda*, T. Kowalczyk, T. B. Clark, G. W. O'Neil (2019) Chemoselective carbonyl allylations with alkoxyallylsiletanes. J. Org. Chem. 84, 7, 4421-4428.

22. P. M. Cheung*, K. T. Burns*, Y. M. Kwon*, M. Y. Deshaye*, K. J. Aguayo*, V. F. Oswald, T. Seda, L. N. Zakharov, T. Kowalczyk, J. D. Gilbertson (2018) Hemilabile proton relays and redox-activity lead to {FeNO}x and significant rate enhancements in NO2- reduction. J. Am. Chem. Soc. 140, 17040-17050.

21. N. A. Garcia*, T. Kowalczyk (2017) Extension of intramolecular charge-transfer state lifetime by encapsulation in porous frameworksJ. Phys. Chem. C 121, 20673-20679.

20. T. J. Blatz*, M. M. Fry*, E. I. James*, T. J. Albin*, Z. Pollard*, T. Kowalczyk, A. R. Murphy (2017) Templating the 3D structure of conducting polymers with self-assembling peptides. J. Mater. Chem. B 5, 4690-4696.

19. Y. Surakhot, V. Laszlo*, C. Chitpakdee, V. Promarak, T. Sudyoadsuk, N. Kungwan, T. Kowalczyk, S. Irle, S. Jungsuttiwong (2017) Theoretical rationalization for reduced charge recombination in bulky carbazole-based sensitizers in solar cells. J. Comput. Chem. 38, 901-909.
This article was selected for the cover of its issue of J. Comput. Chem.

18. R. Nozawa, H. Tanaka, W.-Y. Cha, Y. Hong, I. Hisaki, S. Shimizu, J.-Y. Shin, T. Kowalczyk, S. Irle, D. Kim, H. Shinokubo (2016) Stacked antiaromatic porphyrins. Nat. Commun. 7, 13620.
See the Nagoya University news release at Science Daily

17. K. T. Komoto*, T. Kowalczyk (2016) How parallel are excited state potential energy surfaces from time-independent and time-dependent DFT? A BODIPY dye case study. J. Phys. Chem. A 120, 8160-8168.

16. V. Laszlo*, T. Kowalczyk (2016) Acene-linked covalent organic frameworks as candidate materials for singlet fission. J. Mater. Chem. A 4, 10500-10507.
Featured in Viewpoints on the 2016 Theory and Applications of Computational Chemistry Conference

15. T. Kowalczyk, K. Le*, S. Irle (2016) Self-consistent optimization of excited states within density-functional tight-binding. J. Chem. Theory Comput. 12, 313-323.

14. Y. Shao et al., including T. Kowalczyk (2015) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184-215.

13. S. Jin, T. Sakurai, T. Kowalczyk, S. Dalapati, F. Xu, H. Wei, X. Chen, J. Gao, S. Seki, S. Irle, D. Jiang (2014) Two-dimensional tetrathiafulvalene covalent organic frameworks: Towards latticed conductive organic salts. Chem. Eur. J. 20, 14608-14613.

12. M. Mavros, T. Tsuchimochi, T. Kowalczyk, A. McIsaac, L-P. Wang, T. Van Voorhis (2014) What can density functional theory tell us about artificial catalytic water splitting? Inorg. Chem. 53, 6386-6397.

11. Y. Sado, S. Aoyagi, N. Izumi, R. Kitaura, T. Kowalczyk, J. Wang, S. Irle, E. Nishibori, K. Sugimoto, H. Shinohara (2014) Structure of Tm2 and Tm2C2 encapsulated in low-symmetry C82(Cs(6)) fullerene cage by single crystal X-ray diffraction. Chem. Phys. Lett. 600, 38-42.

10. C. Yuan, S. Saito, C. Camacho, T. Kowalczyk, S. Irle, S. Yamaguchi (2014) Hybridization of a flexible cyclooctatetraene core and rigid aceneimide wings for multiluminescent flapping π systems. Chem. Eur. J. 20, 2193-2200.

9. S. Yost, T. Kowalczyk, T. Van Voorhis (2013) A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states. J. Chem. Phys. 139 (17), 174104.

8. T. Kowalczyk, T. Tsuchimochi, L. Top, P.-T. Chen, T. Van Voorhis (2013) Excitation energies and Stokes shifts from a restricted open-shell Kohn-Sham approach. J. Chem. Phys. 138, 164101.

7. B. Kaduk, T. Kowalczyk, T. Van Voorhis (2012) Constrained density functional theoryChem. Rev. 112, 321-370.

6. T. Kowalczyk, L.-P. Wang, T. Van Voorhis (2011) Simulation of solution phase electron transfer in a compact donor-acceptor dyadJ. Phys. Chem. B 115, 12135-12144.

5. T. Kowalczyk, S. Yost, T. Van Voorhis (2011) Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyesJ. Chem. Phys. 134, 054128.

4. T. Kowalczyk, Z. Lin, T. Van Voorhis (2010) Fluorescence quenching by photoinduced electron transfer in the Zn2+ sensor Zinpyr-1: a computational investigationJ. Phys. Chem. A 114, 10427-10434.

3. T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng, Q. Wu (2010) The diabatic picture of electron transfer, reaction barriers, and molecular dynamicsAnn. Rev. Phys. Chem. 61, 149-170.

2. T. D. Kowalczyk, A. I. Krylov (2007) Electronic structure of carbon trioxide and vibronic interactions involving Jahn-Teller states.  J. Phys. Chem. A 111, 8271-8276.

1. T. D. Kowalczyk, M. L. Abrams, T. D. Crawford (2006) Ab initio optical rotatory dispersion and electronic circular dichroism spectra of (S)-2-chloropropionitrile.  J. Phys. Chem. A 110, 7649-7654.